머신러닝(Machine Learning)의 절차와 이해 - 데이터 수집
서론 머신러닝(Machine Learning)의 절차와 이해 - 데이터 수집에 대해 글을 작성하겠습니다. 분석 문제 정의 → 데이터 수집 → 탐색적 데이터 분석(EDA) → 피처 엔지니어링 → 예측 모델 개발 → 서비스 적용 데이터 수집은 머신러닝 절차 중 분석 문제 정의 다음의 단계이며, 이 단계에서는 정의한 문제를 해결하기 위한 데이터들을 수집하는 단게입니다. 어떤 데이터를 수집하느냐에 따라 문제 해결을 위한 접근 방식이 달라지며, 이것은 데이터의 유형도 신경써야할 필요가 있습니다. 데이터 수집 머신러닝 프로젝트에서 두 번째 단계인 '데이터 수집'은 분석의 기반이 되는 데이터를 확보하는 과정입니다. 이 과정은 다음과 같은 4가지 단계로 이루어집니다.1. 데이터 마트 생성: 데이터 마트는 특정 주제나 ..