머신러닝(Machine Learning) Loss function 기초
서론 머신러닝(Machine Learning) Loss function 기초에 대해 알아보겠습니다. 머신러닝은 인간의 학습 과정을 컴퓨터에 적용함으로써, 컴퓨터가 스스로 학습하고 문제를 해결하는 능력을 갖추게 하는 기술입니다. 이런 학습 과정에서 중요한 역할을 하는 것 중 하나가 Loss Function, 즉 손실 함수입니다. 손실 함수는 머신러닝 모델이 예측한 결과와 실제 값 사이의 차이, 즉 오차를 측정하는 방법입니다. 이 오차는 모델이 얼마나 잘 또는 잘못 작동하고 있는지를 나타내는 지표로, 이 값을 최소화하는 것이 머신러닝의 주요 목표 중 하나입니다. 이러한 손실 함수의 중요성은 머신러닝의 핵심 절차인 '추론(Inference)' 단계에서 특히 드러납니다. 모델이 학습 데이터를 바탕으로 새로운 데..